If it's not what You are looking for type in the equation solver your own equation and let us solve it.
244x^2-6x-3=0
a = 244; b = -6; c = -3;
Δ = b2-4ac
Δ = -62-4·244·(-3)
Δ = 2964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2964}=\sqrt{4*741}=\sqrt{4}*\sqrt{741}=2\sqrt{741}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{741}}{2*244}=\frac{6-2\sqrt{741}}{488} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{741}}{2*244}=\frac{6+2\sqrt{741}}{488} $
| 8+15y=45 | | -5z+7=22 | | 3x-10+21/3=15 | | 20y-10=15 | | 8(5x+10)=20 | | 50-w=158 | | 2x-4-x+10=8 | | (2z+3)(5+z)=0 | | C=5x+3x | | C=5+3x | | C=x(5+3) | | 2x+5=-9x+2 | | 2(x-7)=2x+9 | | (9+18y/3)^2+y=7 | | Y^2-3y+1.25=0 | | 7b+8=5b+12 | | X²-8x-180=0 | | 16=-2+3c | | 13(y-y)-3(y-9)-5(y+4)=0 | | 7x+3=3x+35=180 | | 4x+60+x+20=180 | | 4x-14=x+85=180 | | 3x-26=2x+24=180 | | 21x-2+3(4x-1)=0 | | 2x+4=4x-88=180 | | 17-2x=5x-32 | | x+9=2x-111=180 | | X-8=x2 | | 2x+15=3x-20=180 | | 8x-3=9-22 | | x+14=5x-74=180 | | 100z=2760+40z |